Velvet-mediated repression of β-glucan synthesis in Aspergillus nidulans spores
نویسندگان
چکیده
Beta-glucans are a heterologous group of fibrous glucose polymers that are a major constituent of cell walls in Ascomycetes and Basidiomycetes fungi. Synthesis of β (1,3)- and (1,6)-glucans is coordinated with fungal cell growth and development, thus, is under tight genetic regulation. Here, we report that β-glucan synthesis in both asexual and sexual spores is turned off by the NF-kB like fungal regulators VosA and VelB in Aspergillus nidulans. Our genetic and genomic analyses have revealed that both VosA and VelB are necessary for proper down-regulation of cell wall biosynthetic genes including those associated with β-glucan synthesis in both types of spores. The deletion of vosA or velB results in elevated accumulation of β-glucan in asexual spores. Double mutant analyses indicate that VosA and VelB play an inter-dependent role in repressing β-glucan synthesis in asexual spores. In vivo chromatin immuno-precipitation analysis shows that both VelB and VosA bind to the promoter region of the β-glucan synthase gene fksA in asexual spores. Similarly, VosA is required for proper repression of β-glucan synthesis in sexual spores. In summary, the VosA-VelB hetero-complex is a key regulatory unit tightly controlling proper levels of β-glucan synthesis in asexual and sexual spores.
منابع مشابه
Aspergillus nidulans Cell Wall Composition and Function Change in Response to Hosting Several Aspergillus fumigatus UDP-Galactopyranose Mutase Activity Mutants
Deletion or repression of Aspergillus nidulans ugmA (AnugmA), involved in galactofuranose biosynthesis, impairs growth and increases sensitivity to Caspofungin, a β-1,3-glucan synthesis antagonist. The A. fumigatus UgmA (AfUgmA) crystal structure has been determined. From that study, AfUgmA mutants with altered enzyme activity were transformed into AnugmA▵ to assess their effect on growth and w...
متن کاملThe role of VosA/VelB-activated developmental gene vadA in Aspergillus nidulans
The filamentous fungus Aspergillus nidulans primarily reproduces by forming asexual spores called conidia, the integrity of which is governed by the NF-κB type velvet regulators VosA and VelB. The VosA-VelB hetero-complex regulates the expression of spore-specific structural and regulatory genes during conidiogenesis. Here, we characterize one of the VosA/VelB-activated developmental genes, cal...
متن کاملRole of LAMMER Kinase in Cell Wall Biogenesis during Vegetative Growth of Aspergillus nidulans
Depending on the acquisition of developmental competence, the expression of genes for β-1,3-glucan synthase and chitin synthase was affected in different ways by Aspergillus nidulans LAMMER kinase. LAMMER kinase deletion, ΔlkhA, led to decrease in β-1,3-glucan, but increase in chitin content. The ΔlkhA strain was also resistant to nikkomycin Z.
متن کاملAn Amylase-Like Protein, AmyD, Is the Major Negative Regulator for α-Glucan Synthesis in Aspergillus nidulans during the Asexual Life Cycle
α-Glucan affects fungal cell-cell interactions and is important for the virulence of pathogenic fungi. Interfering with production of α-glucan could help to prevent fungal infection. In our previous study, we reported that an amylase-like protein, AmyD, could repress α-glucan accumulation in Aspergillus nidulans. However, the underlying molecular mechanism was not clear. Here, we examined the l...
متن کاملThe Role, Interaction and Regulation of the Velvet Regulator VelB in Aspergillus nidulans
The multifunctional regulator VelB physically interacts with other velvet regulators and the resulting complexes govern development and secondary metabolism in the filamentous fungus Aspergillus nidulans. Here, we further characterize VelB's role in governing asexual development and conidiogenesis in A. nidulans. In asexual spore formation, velB deletion strains show reduced number of conidia, ...
متن کامل